Triterpenoid Saponins from *Derris eriocarpa* How

Bin Wang^{1#}, Shengxin Cai^{2#}, Ping Jiao², Thida Tea², Gil Ma¹, Indra Prakash^{1*} ¹The Coca-Cola Company, One Coca-Cola Plaza North West, Atlanta, GA 30313

¹The Coca-Cola Company, One Coca-Cola Plaza North West, Atlanta, GA 30313 ²Unigen USA, 2121 South State St., Suite 400, Tacoma, WA 98405 # Share the same contribution to the manuscript

* Corresponding author

Abstract

Seven new oleanane-type triterpenoid saponins, Derrisaponins D-J (1-7), were isolated from the vines of Derris eriocarpa How together with five known compounds, Derrisaponins A-C and Millettiasaponins A-B (8-12). The structures of Derrisaponins D-J (1-7) were determined based on the detailed analysis of 1D and 2D NMR as well as MS data.

Keywords: Derris eriocarpa How, triterpenoid saponin, derrisaponin, NMR, sweetness

Date of Submission: 12-02-2023

Date of acceptance: 26-02-2023

I. Introduction

Derris eriocarpa How ('Tugancao' in Chinese) is a traditional 'Zhuang' and 'Dai' ethnopharmacy, and it is used to treat inflammation, cough, nephritis, cystitis, etc.¹⁻² This medicinal plant is also used to substitute licorice for sweetness due to its similar sweet taste to licorice, which is one of the oldest well-known sweet tasting plants in the world.^{1,3-4} Most recently, Millettiasaponin A and Derrisaponin A were reported from this plant and the sweetness test indicated that they are 150 and 80 times sweeter than sucrose.¹ This encouraged us to look deep into the possible analogs of Millettiasaponin A and Derrisaponin A from *D. eriocarpa* How. The goal of this research is to isolate new triterpenoid saponins from *D. eriocarpa* How and test their sweet profiles.

10 kg dried powder from the vines of *D. eriocarpa* How were extracted using 70% EtOH to yield 1.25 kg of the extract. 450 g of the extract was then separated on XAD, HP20ss, C18, and Sephadex LH20 column chromatography, and preparative RP-HPLC, respectively. Twelve triterpenoid saponins were obtained, including seven new compounds, Derrisaponins D-J (1–7), and five known analogs, Derrisaponins A-C (8-10) and Millettiasaponins A-B (11-12). The structures of the new compounds (1–7) were identified by high-resolution ESIMS and NMR analysis including 1D and 2D NMR. The known compounds (8–12) were confirmed by comparing MS and NMR data to published data.^{1,5}

II. Results And Discussions

Compound 1 was obtained as a white amorphous powder, and the molecular formula was determined to be $C_{50}H_{78}O_{20}$ by HRESIMS analysis ([M-H]⁻ at m/2 997.5011, calcd for $C_{50}H_{77}O_{20}$, 997.5014, $\Delta = 0.3$ ppm). The ¹H and ¹³C NMR spectra (Tables 1 and 2) displayed a very similar NMR data set with the co-occurrence Millettiasaponin A $(11)^1$ (see Tables S1 and S2 for NMR data). The only difference observed was that the hydroxymethyl group at C-24 ($\delta_{\rm C}$ 64.1 and $\delta_{\rm H}$ 4.27/3.26) was replaced by a methyl group ($\delta_{\rm C}$ 17.3 and $\delta_{\rm H}$ 1.20). Taking the MS difference of these two compounds (16 Da) into consideration, the planar structure of compound 1 was determined and the conclusion was further confirmed based on a detailed analysis of HMBC correlations, selected HMBC correlations were shown in Figure 1. Specifically, the linkage sites of sugar units and the aglycone were determined by the HMBC correlations from H-1' ($\delta_{\rm H}$ 5.08) to C-3 ($\delta_{\rm C}$ 90.3), from H-1" ($\delta_{\rm H}$ 5.77) to C-2' ($\delta_{\rm C}$ 79.7), and from H-1''' ($\delta_{\rm H}$ 6.35) to C-2'' ($\delta_{\rm C}$ 77.1) (Figure 1). The relative configuration of compound 1 was established based on the analysis of the ROESY correlations (Figure 1) and the coupling constants. The correlations of H₃-23/H-3, H-3/H-5, and H-5/H-9 indicated that these protons were in α -orientation. The correlations between H₃-24/H₃-25, and H₃-25/H₃-26 revealed that they were in β -orientation. The coupling constants of H-18 ($\delta_{\rm H}$ 2.98, dd, J = 13.2, 4.6) indicated that H-18 possessed an axial direction. Together with ROESY correlations of H-12/H-18 and H-18/H₃-28, the β -orientation of these protons could be obtained. The coupling constant of one proton of H₂-19 ($\delta_{\rm H}$ 2.37, d, J = 12.7) indicated that this proton was in an equatorial direction (β -oriented) and the other proton ($\delta_{\rm H}$ 1.86, m) would be in the axial direction (α -oriented). Similar analysis revealed that H₂-21 ($\delta_{\rm H}$ 2.88, d, J = 14.4) was in the equatorial direction (β -oriented) and the other proton ($\delta_{\rm H}$ 1.80, m) would be in the axial direction (α -oriented). The correlations of H₃-29/H_{ax}-19 and H₃-29/Hax-21 suggested that CH₃-29 was α -oriented and in an axial direction. The coupling constants of H-22 ($\delta_{\rm H}$

2.89, dd, J = 2.8, 3.0) indicated it was in the equatorial direction (α -oriented). The β -configurations of the GluA and Gal glycosidic bonds were established by the coupling constants of H-1' ($\delta_{\rm H}$ 5.08, d, J = 7.7 Hz) and H-1" ($\delta_{\rm H}$ 5.77, d, J = 7.7 Hz).⁶ And the α -configuration of the Rha was determined by the singlet at $\delta_{\rm H}$ 6.35 (H-1") and C-5" at $\delta_{\rm C} = 70.0$.⁶⁻⁸ GluA and Gal were tentatively assigned as D-configuration and Rha was tentatively assigned as L-configuration following that of Millettiasaponin A (11) and three other co-occurrence metabolites from this plant, DerrisaponinsA-C (8–10). Consequently, compound 1 was elucidated and named Derrisaponin D.

Compound 2 was purified as a white amorphous powder, and the HRESIMS peak at m/z 999.5140 ([M-H]⁻) suggested its molecular formula as $C_{50}H_{80}O_{20}$ (calcd for $C_{50}H_{79}O_{20}$, 999.5170, $\Delta = 3.0$ ppm). Detailed ¹H and ${}^{13}C$ NMR data analysis (Tables 1 and 2) indicated compound 2 was an analog of Millettiasaponin A (11)¹ (see Tables S1 and S2 for NMR data), and their NMR data were very similar to each other. The only difference observed was that the C-30 carbonyl signal ($\delta_{\rm C}$ 180.0) was replaced by that of a hydroxymethyl group ($\delta_{\rm C}$ 68.5 and $\delta_{\rm H} 3.89/3.84$). This observation together with MS difference of these two compounds (14 Da) revealed the planar structure of compound 2, and the conclusion was further confirmed by a detailed analysis of ¹H-¹H COSY and HMBC analysis. The HMBC correlation from H₃-29 to C-30 (Figure S1) confirmed the reduction of the carboxylic acid to a hydroxymethyl group. The HMBC correlation from H-1""($\delta_{\rm H}$ 6.32) to C-2" ($\delta_{\rm C}$ 78.1) confirmed the linkage of Rha and Gal, and the ROESY correlations between H-1' ($\delta_{\rm H}$ 5.00) and H-3 ($\delta_{\rm H}$ 3.40), and between H-1" ($\delta_{\rm H}$ 5.83) and H-2' ($\delta_{\rm H}$ 4.63) revealed the attach position of GluA to the aglycone and that of Gal to GluA. (Figure S1). The relative configuration of the aglycone was confirmed by the detailed analysis of ROESY correlations (Figure S2) and coupling constants of H-18, H₂-19, H₂-21, and H-22. Specifically, the β orientation of the new hydroxymethyl group was deduced from the ROESY correlation between H-18 and H-30. The β -configurations of the GluA and Gal glycosidic bonds were established by the coupling constants of H-1' $(\delta_{\rm H} 5.00, d, J = 6.6 \text{ Hz})$ and H-1" $(\delta_{\rm H} 5.83, d, J = 7.5 \text{ Hz})$,⁶ and they were tentatively assigned as D-configuration. The α -configuration of the Rha was determined by the singlet at $\delta_{\rm H} 6.32$ (H-1'') and C-5''' at $\delta_{\rm C} = 69.9^{.6-8}$ And it was tentatively assigned as L-configuration. Thus, compound 2 was confirmed and named Derrisaponin E.

Compound **3** was isolated as a white amorphous powder, and the molecular formula was determined to be $C_{51}H_{80}O_{21}$ by HRESIMS analysis ([M-H]⁻ at m/z 1027.5159, calcd for $C_{51}H_{79}O_{21}$, 1027.5119, $\Delta = 3.9$ ppm). The comparison of ¹H and ¹³C NMR data (**Tables 1** and **2**) indicated that it shared a very similar NMR data set with Millettiasaponin A (**11**)¹ (see **Tables S1** and **S2** for NMR data). The exception observed was the presence of an additional methoxy group (δ_C 52.5 and δ_H 3.77). The position of the methoxy group was confirmed based on its correlation with C-6' in the HMBC spectrum (**Figure S1**). The linkage points of sugar units and the aglycone were confirmed by the HMBC correlations from H-1''' (δ_H 6.32) to C-2'' (δ_C 78.1), from H-1'' (δ_H 5.82) to C-2' (δ_C 77.0), and from H-1' (δ_H 4.96) to C-3 (δ_C 91.8) (**Figure S1**). The relative configuration of the aglycone was obtained from ROESY correlations (**Figure S2**) and detailed analysis of the coupling constants of H-18, H₂-19, H₂-21, and H-22. The β -configurations of the GluA and Gal glycosidic bonds were established based on the coupling constants of H-1' (δ_H 4.96, d, J = 7.5 Hz) and H-1'' (δ_H 5.82, d, J = 7.5 Hz),⁶ and they were tentatively assigned as D-configuration. The α -configuration of the Rha was determined by the singlet at δ_H 6.32 (H-1''') and C-5''' at $\delta_C = 69.9$.⁶⁻⁸ The Rha was tentatively assigned as L-configuration. Thus, compound **3** was confirmed and named Derrisaponin F.

Compound 4 was obtained as a white amorphous powder, and the HRESIMS peak at m/z 1145.5405 ([M-H]⁻) suggested its molecular formula as $C_{55}H_{86}O_{25}$ (calcd for $C_{55}H_{85}O_{25}$, 1145.5380, $\Delta = 2.2$ ppm). The comparison of ¹H and ¹³C NMR data of compound 4 (Tables 1 and 2) with that of Derrisaponin A (8^{1} (see Tables S1 and S2 for NMR data) indicated that a fourth sugar unit was incorporated into this compound. The additional sugar unit was identified as D-xylose based on the NMR data (H-1ⁱ"-5"", $\delta_{\rm H}$ 5.04, 4.08, 4.09, 4.17, and 4.27/3.65; C-1""-5"", $\delta_{\rm C}$ 107.2, 75.3, 78.7, 71.5, and 67.5) (Tables 1 and 2).⁶ The linkage positions of sugar units were deduced from the HMBC correlations from H-1'' ($\delta_{\rm H}$ 6.22) to C-2'' ($\delta_{\rm C}$ 77.6) and from H-1'' ($\delta_{\rm H}$ 5.87) and C-2' ($\delta_{\rm C}$ 77.0), and the ROESY correlation between H-1"" ($\delta_{\rm H}$ 5.04) and H-3" ($\delta_{\rm H}$ 4.13) (Figure S1). The attached position of the oligosaccharide chain to the aglycone was confirmed based on the ROESY correlation between H-1' ($\delta_{\rm H}$ 5.01) and H-3 ($\delta_{\rm H}$ 3.40) (Figure S1). The relative configuration of the aglycone was confirmed by the extensive analysis of ROESY correlations (Figure S2) and coupling constants of H-18, H₂-19, H₂-21, and H-22. The β -configurations of the GluA, Gal, and Xyl glycosidic bonds were established by the coupling constants of H-1' ($\delta_{\rm H}$ 4.96, d, J = 7.5 Hz), H-1" ($\delta_{\rm H}$ 5.82, d, J = 7.5 Hz), and H-1"" ($\delta_{\rm H}$ 5.04, d, J = 6.5 Hz), respectively.⁶ And they were tentatively assigned as D-configuration. The a-configuration of the Rha was determined by the singlet at $\delta_{\rm H}$ 6.22 (H-1") and C-5" at $\delta_{\rm C}$ = 69.9.⁶⁻⁸ And it was tentatively assigned as Lconfiguration. Thus, compound 4 was confirmed and named Derrisaponin G.

Compound 5 was isolated as a white amorphous powder, and the molecular formula $(C_{50}H_{76}O_{21})$ was concluded from the HRESIMS data ([M-H]⁻ at m/z 1011.4801, calcd for C₅₀H₇₅O₂₁, 1011.4806, $\Delta = 0.5$ ppm). Due to poor solubility, the NMR data of Compound 5 was collected in DMSO- d_6 . For comparison, NMR data of the co-occurrence Millettiasaponin A (11) was also collected in DMSO- d_6 . These two compounds showed very similar ¹H and ¹³C NMR spectra (**Tables 1, 2, S1**, and **S2**) with the difference at C-24: the hydroxymethyl group (CH₂OH-24: $\delta_{\rm C}$ 62.8, $\delta_{\rm H}$ 3.91/3.70) vs the aldehyde group (CHO-24: $\delta_{\rm C}$ 207.1, $\delta_{\rm H}$ 9.90). The replacement was confirmed by the HMBC correlations from H₃-23 to C-24, and from H-24 to C-4 (Figure S1). The linkage sites of sugar units and the aglycone were established by the HMBC correlation from H-1" ($\delta_{\rm H}4.99$) to C-2" ($\delta_{\rm C}74.9$) and by the ROESY correlations between H-1' ($\delta_{\rm H}$ 4.18) and H-3 ($\delta_{\rm H}$ 3.26) and between H-1" ($\delta_{\rm H}$ 4.67) and H-2' $(\delta_{\rm H} 3.38)$ (Figure S1). The relative configuration of the aglycone was confirmed by the detailed analysis of ROESY data (Figure S2) and coupling constants of H-18, H₂-19, H₂-21, and H-22. The β -configurations of the GluA and Gal glycosidic bonds were established by the coupling constants of H-1' ($\delta_{\rm H}$ 4.50, d, J = 7.2 Hz) and H-1" ($\delta_{\rm H}$ 4.60, d, J = 7.8 Hz)⁶ [these data were from the ¹H NMR spectrum collected in D₂O]. And they were tentatively assigned as D-configuration. The α -configuration of the Rha was determined by the singlet at $\delta_{\rm H}4.99$ (H-1'') and C-5''' at $\delta_{\rm C} = 68.4$.⁶⁻⁸ The configuration of Rha was tentatively assigned to be L. Thus, compound 5 was confirmed and named Derrisaponin H.

Compound $\mathbf{6}$ was obtained as a white amorphous powder, and the molecular formula was established to be $C_{54}H_{84}O_{25}$ based on HRESIMS data ([M-H]⁻ at m/z 1131.5282, calcd for $C_{54}H_{83}O_{25}$, 1131.5229, $\Delta = 4.7$ ppm). Compound 6 gave a very similar 1D NMR data set (Tables 1 and 2) with that of Millettiasaponin B $(12)^5$ (see Tables S1 and S2 for NMR data) except for the presence of an additional sugar unit. The additional unit was determined to be D-glucose based on the MS difference (162 Da) and the NMR data (H-1""-6"", $\delta_{\rm H}$ 5.16, 4.07, 4.21, 4.22, 3.91, and 4.47/4.35; C-1""-6"", δ_C 106.4, 75.5, 78.7, 72.0, 78.7, and 63.1). The linkage of sugar units was determined from the HMBC correlations of H-1"" ($\delta_{\rm H}$ 5.16) to C-3" ($\delta_{\rm C}$ 73.3), H-1" ($\delta_{\rm H}$ 6.21) to C-2" ($\delta_{\rm C}$ 77.7), and H-1" ($\delta_{\rm H}$ 5.79) to C-2' ($\delta_{\rm C}$ 76.9) (Figure S1). The attached position of the oligosaccharide chain to the aglycone was confirmed based on the HMBC correlation from H-1' ($\delta_{\rm H}4.97$) to C-3 ($\delta_{\rm C}91.7$) (Figure S1). The partial structure of the five-membered lactone ring was confirmed from the HMBC correlations from H-29 ($\delta_{\rm H}$ 4.24, 3.80)/H-22 ($\delta_{\rm H}$ 4.30) to C-20 ($\delta_{\rm C}$ 48.9)/C-30 ($\delta_{\rm C}$ 179.5) (Figure S1). The relative configuration of the aglycone was confirmed by the detailed analysis of ROESY data (Figure S2) and coupling constants of H-18, H₂-19, H₂-21, and H-22. The β -configurations of the GluA, Gal, and Glc glycosidic bonds were established by the coupling constants of H-1' ($\delta_{\rm H}$ 4.97, d, J = 7.4 Hz), H-1" ($\delta_{\rm H}$ 5.79, d, J = 7.6 Hz), and H-1"" ($\delta_{\rm H}$ 5.16, d, J = 7.6 Hz) 7.8 Hz), respectively.⁶ And they were tentatively assigned as D-configuration. The α -configuration of the Rha was determined by the singlet at $\delta_{\rm H} 6.21$ (H-1"') and C-5" at $\delta_{\rm C} = 69.7$.⁶⁻⁸ And it was tentatively assigned as Lconfiguration. Thus, compound 6 was confirmed and named Derrisaponin I.

Compound 7 was purified as a white amorphous powder, and the molecular formula was determined to be C₄₈H₇₂O₂₁ by HRESIMS analysis ([M-H]⁻ at m/2 983.4510, calcd for C₄₈H₇₁O₂₁, 983.4493, $\Delta = 1.7$ ppm). The 1D NMR of this compound (Tables 1 and 2) was very similar to Millettiasaponin B (12)⁵ (see Tables S1 and S2 for NMR data) except for the disappearance of resonances for the hydroxymethyl group (CH₂OH-29, $\delta_{\rm C}$ 63.9 and $\delta_{\rm H}$ 4.23/3.90) and the presence of a carbonyl carbon ($\delta_{\rm C}$ 173.0). Taking the MS difference (14 Da) and downfield of C-27 ($\delta_{\rm C}$ 49.5 to 53.8) into consideration, CH₂OH-29 in Millettiasaponin B (12) was replaced by COOH-29 in compound 7. The linkage positions of sugar units and the aglycone were established by the HMBC correlations from H-1" ($\delta_{\rm H}$ 6.30) to C-2" ($\delta_{\rm C}$ 78.2), from H-1" ($\delta_{\rm H}$ 5.82) to C-2' ($\delta_{\rm C}$ 77.1), and from H-1' ($\delta_{\rm H}$ 5.00) to C-3 ($\delta_{\rm C}$ 91.5) (Figure S1). The partial structure of the five-membered lactone ring was confirmed from the HMBC correlations from H-22 ($\delta_{\rm H}$ 4.43) to C-20 ($\delta_{\rm C}$ 53.8)/C-30 ($\delta_{\rm C}$ 176.1). The relative configuration of the aglycone was confirmed by the correlations from the ROESY spectrum (Figure S1) and extensive analysis of the coupling constants of H-18, H₂-19, H₂-21, and H-22. The β -configurations of the GluA and Gal glycosidic bonds were established by the coupling constants of H-1' ($\delta_{\rm H}$ 5.00, d, J = 7.5 Hz) and H-1" ($\delta_{\rm H}$ 5.82, d, J = 7.5Hz).⁶ And they were tentatively assigned as D-configuration. The α -configuration of the Rha was determined by the singlet at $\delta_{\rm H} 6.30$ (H-1^{'''}) and C-5^{'''} at $\delta_{\rm C} = 69.8$.⁶⁻⁸ And the Rha was tentatively assigned as L-configuration. Thus, compound 7 was confirmed and named Derrisaponin J.

III. EXPERIMENTAL

General: NMR spectra were acquired on a Varian 500 MHz spectrometer with TMS as the internal standard. High-resolution electrospray ionization (HRESIMS) accurate mass measurements were carried out on a Waters ACQUITY UPLC-I-class Xevo G2-XS-QTof instrument. Column chromatography (CC) separations were carried out using AmberliteTM, XAD, DiaionTM, HP20ss, Sephadex[®] LH-20, and Biotage[®] C18 SNAP cartridge. Preparative HPLC was performed on a D-7000 HSM with a L-7455 detector using Phenomenex Luna 5 μ m C₁₈ columns (250 mm × 21.2 mm and 250 mm × 10.0 mm).

Plant Material. Different parts from *D. eriocarpa* How (leaves, vines, roots) were collected in small scales from three locations (Liuqiu, Yulin, and Meishuling) in Guangxin, China. The dried powder was extracted using 70% EtOH by ultrasonic for 1h, the extract was analyzed using HRESIMS, respectively. The HRMS of known derrisaponins and their fragmentations were used for candidate selection. As a result, dried vines of *Derris eriocarpa* were collected in November 2018 in Yulin, Guangxi, China.

Extraction and Isolation: 10 kg dried powder from the vines of *D. eriocarpa* How were extracted using 70% EtOH to yield 1.25 kg of the extract. 450 g of extract was chromatographed over XAD, HP20ss, Sephadex LH20, and C18 columns, followed by preparative HPLC and/or semi-preparative HPLC (details see Supporting Information) to yield compounds 1 (7.7 mg), 2 (5.5 mg), 3 (6.4 mg), 4 (19.2 mg), 5 (5.5 mg), 6 (18.5 mg), 7 (23.9 mg), 8 (23.2 mg), 9 (31.3 mg), 10 (16.9 mg), 11 (36.3 mg), and 12 (25.6 mg).

Derrisaponin D (1): white amorphous powder. HRESIMS: m/z [M-H]⁻ 997.5011 (calcd for C₅₀H₇₇O₂₀, 997.5014, $\Delta = 0.3$ ppm). ¹H and ¹³C NMR: **Tables 1** and **2**.

Derrisaponin E (2): white amorphous powder. HRESIMS: m/z [M-H]⁻ 999.5140, calcd for C₅₀H₇₉O₂₀, 999.5170, $\Delta = 3.0$ ppm). ¹H and ¹³C NMR: **Tables 1** and **2**.

Derrisaponin F (3): white amorphous powder. HRESIMS: m/z [M-H]⁻ 1027.5159 (calcd for C₅₁H₇₉O₂₁, 1027.5119, $\Delta = 3.9$ ppm). ¹H and ¹³C NMR: **Tables 1** and **2**.

Derrisaponin G (4): white amorphous powder. HRESIMS: m/z [M-H]⁻ 1145.5405, calcd for C₅₅H₈₅O₂₅, 1145.5380, $\Delta = 2.2$ ppm). ¹H and ¹³C NMR: **Tables 1** and **2**.

Derrisaponin H (5): white amorphous powder. HRESIMS: m/z [M-H]⁻ 1011.4801, calcd for C₅₀H₇₅O₂₁, 1011.4806, $\Delta = 0.5$ ppm). ¹H and ¹³C NMR: **Tables 1** and **2**.

Derrisaponin I (6): white amorphous powder. HRESIMS: m/z [M-H]⁻ 1131.5282, calcd for C₅₄H₈₃O₂₅, 1131.5229, $\Delta = 4.7$ ppm). ¹H and ¹³C NMR: **Tables 1** and **2**.

Derrisaponin J (7): white amorphous powder. HRESIMS: m/z [M-H]⁻ 983.4510, calcd for C₄₈H₇₁O₂₁, 983.4493, $\Delta = 1.7$ ppm).¹H and ¹³C NMR: **Tables 1** and **2**.

Supplementary data: Supplementary data, such as detailed separation procedure, NMR data for the known compounds, and HRESIMS and NMR spectra for the new compounds, are included in the Supporting Information.

References

- Zhang HX, Sun G, Gu JL, Du ZZ. New Sweet-Tasting Oleanane-Type Triterpenoid Saponins from "Tugancao" (Derris eriocarpa How). J. Agric Food Chem. 2017; 65 (11): 2357–2363. doi:10.1021/acs.jafc.7b00137
- Zhang HX, Lunga PK, Li ZJ, Dai Q, Du ZZ. Flavonoids and stilbenoids from *Derris eriocarpa*. Fitoterapia 2014; 95 (June): 147-153. doi: 10.1016/j.fitote.2014.03.015
- [3]. Kinghorn AD, Compadre CM. Less common high-potency sweeteners. Alternative sweeteners, 4th edition; CRC Press/Taylor & Francis Group: Boca Raton, FL, 2011.
- [4]. Shou Q, Jiao P, Hong M, Jia Q, Prakash I, Hong S, Wang B, Bechman A, Ma G. Triterpenoid Saponins from the Roots of *Glycyrrhiza glabra*. Nat. Prod. Commun. 2019; 14 (1): 19-22. doi:10.1177/1934578X1901400106
- [5]. Uchiyama T, Furukawa M, Isobe S, Makino M, Akiyama T, Koyama T, Fujimoto Y. New Oleanane-Type Triterpene Saponins from *Millettia speciosa*. Heterocycles 2003; 60 (3): 655-661. doi: 10.3987/COM-02-9678
- [6]. Wang X, Wang M, Xu M, Wang Y, Tang H, Sun X. Cytotoxic Oleanane-Type Triterpenoid Saponins from the Rhizomes of Anemone rivularis var. flore-minore. Molecules 2014; 19 (2): 2121-2134. doi: 10.3390/molecules19022121
- Zheng Q, Koike K, Han LK, Okuda H, Nikaido T. New biologically active triterpenoid saponins from *Scabiosa tschiliensis*. J. Nat. Prod. 2004; 67 (4): 604-613. doi: 10.1021/np0304722
- [8]. Xu TH, Xu YJ, Li HX, Han D, Zhao HF, Xie SX, Xu DM. Two new triterpenoid saponins from *Pulsatilla cernua* (Thunb.) Bercht. EtOpiz. J. Asian Nat. Prod. Res. 2007; 9 (6-8): 705–711. doi: 10.1080/10286020600882635

Figure 1. Selected HMBC and ROESY correlations for Derrisaponin D (1)

NO.	1ª	2 ^a	3 ^a	4 ^a	5 ^b	6 ^a	7 ª
1	1.41 m; 0.87 m	1.35 m; 0.83 m	1.35 m; 0.83 m	1.34 m; 0.84 m	1.62 m; 0.98 m	1.32 m; 0.82 m	1.33 m; 0.84 m
2	2.20 m; 1.87 m	2.21 m; 1.88 m	2.09 m; 1.85 m	2.21 m; 1.86 m	2.08 m; 1.88 m	2.18 m; 1.86 m	2.22 m; 1.88 m
3	3.33 dd (11.8, 4.4)	3.40 dd (11.7, 3.9)	3.38 dd (12, 4.6)	3.40 dd (12.1, 3.7)	3.26 m	3.38 dd (11.7, 4.6)	3.41 dd (11.8, 4.6)
5	0.82 m	0.86 m	0.86 m	0.88 m	0.98 m	0.85 m	0.85 m
6	1.56 m; 1.35 m	1.55 m; 1.25 m	1.56 m; 1.25 m	1.63 m; 1.33 m	1.66 m; 1.24 m	1.61 m; 1.30 m	1.56 m; 1.24 m
7	1.53 m; 1.27 m	1.48 m; 1.28 m	1.50 m; 1.27 m	1.52 m; 1.30 m	1.42 m; 1.25 m	1.47 m; 1.32 m	1.44 m; 1.29 m
9	1.65 m	1.58 m	1.61 m	1.63 m	1.55 m	1.56 m	1.54 m
11	1.86 m	1.77 m	1.83 m	1.84 m	1.84 m	1.74 m	1.72 m
12	5.58 brs	5.26 brs	5.57 brs	5.57 brs	5.22 brs	5.14 dd (3.6, 3.8)	5.16 dd (3.6, 3.7)
15	1.81 m; 1.01 m	1.74 m; 1.00 m	1.78 m; 1.00 m	1.79 m; 1.02 m	1.70 m; 0.94 m	1.70 m; 0.98 m	1.69 m; 1.01 m
16	1.95 m; 1.01 m	1.93 m; 1.13 m	1.95 m; 1.03 m	1.95 m; 1.02 m	1.87 m; 0.94 m	1.87 m; 1.07 m	1.88 m; 1.08 m
18	2.98 dd (13.2, 4.6)	2.41 dd (13.2, 3.9)	2.97 dd (13.1, 4.4)	2.98 dd (13.0, 3.9)	2.36 brd (12.9)	2.24 dd (13.2, 6.8)	2.32 d (13.2, 5.5)
19	2.37 d (12.7); 1.86 m	1.84 m; 1.57 m	2.35 d (11.9); 1.86 m	2.36 brd (12.8); 1.85 m	1.75 m; 1.59 m	2.02 dd (13.5, 13.3); 1.59 m	2.59 m; 2.35 dd (13.3
21	2.88 d (14.4), 1.80 m	2.13 m; 1.56 m	2.87 d (14.3); 1.82 m	2.88 d (14.9); 1.80 m	2.15 d (14.0); 1.59 m	2.69 dd (11.9, 5.2); 2.39 d (11.9)	3.06 dd (11.2, 7.2); 2.69 d (12.0)
22	4.89 dd (3.0, 2.8)	4.97 dd (3.5, 3.2)	4.88 t (2.6)	4.89 brs	4.35 brs	4.30 m	4.43 m
23	1.44 s	1.46 s	1.46 s	1.47 s	1.19 s	1.43 s	1.45 s
24	1.20 s	4.27 d (11.3); 3.26 d (11.3)	4.26 d (11.4); 3.25 d (11.4)	4.29 m; 3.34 d (11.3)	9.90 s	4.29 m; 3.34 d (11.4)	4.27 d (11.4); 3.25 d (
25	0.84 s	0.69 s	0.69 s	0.71 s	0.70 s	0.70 s	0.68 s
26	0.96 s	0.90 s	0.92 s	0.93 s	0.86 s	0.84 s	0.82 s
27	1.32 s	1.29 s	1.33 s	1.34 s	1.13 s	1.22 s	1.21 s
28	1.02 s	0.99 s	1.02.8	1.02 s	0.70 s	1.02 s	1.02 s
29	1.37 s	1.20 s	1.36 s	1.36 s	1.03 s	4.24 m, 3.90 m	
30		3.89 d (10.3), 3.84 d (10.3)				,	
32	2.05 s	2.12 s	2.05 s	2.05 s	1.89 s		
1'	5.08 d (7.7)	5.00 d (6.6)	4.96 d (7.5)	5.01 d (6.6)	4.18 m	4.97 d (7.4)	5.00 d (7.5)
2'	4.55 m	4.63 m	4.55 m	4.65 m	3.38 m	4.62 m	4.63 m
3'	4.67 m	4.64 m	4.57 m	4.62 m	3.37 m	4.62 m	4.62 m
4'	4.54 m	4.49 m	4.32 m	4.48 m	3.09 m	4.47 m	4.49 m
5'	4.66 m	4.64 m	4.53 m	4.64 m	3.21 m	4.63 m	4.65 m
OCH ₃			3.77 s				
1"	5.77 d (7.7)	5.83 d (7.5)	5.82 d (7.5)	5.87 d (7.6)	4.67 m	5.79 d (7.6)	5.82 d (7.5)
2"	4.69 m	4.59 m	4.58 m	4.63 m	3.37 m	4.58 m	4.58 dd (9.7, 7.6)
3"	4.21 dd (9.5, 3.5)	4.13 dd (9.5, 3.0)	4.13 dd (9.6, 3.4)	4.13 m	3.24 m	4.18 m	4.12 dd (9.6, 3.3)
4"	4.51 m	4.42 m	4.41 m	4.73 brs	3.57 m	4.71 d (3.1)	4.42 m
5"	3.94 dd (6.2, 6.3)	3.95 dd (6.0, 6.1)	3.95 t (6.1)	4.02 dd (6.0, 6.2)	3.21 m	3.92 dd (5.8, 5.9)	3.95 dd (6.0, 6.1)
6"	4.51 m, 4.43 m	4.44 dd (11.5, 5.1); 4.33 dd (11.0, 5.4)	4.43 m; 4.34 m	4.43 m; 4.32 m	3.48 m; 3.34 m	4.29 m; 4.23 m	4.43 m; 4.34 m
1'''	6.35 s	6.32 s	6.32 s	6.22 s	4.99 s	6.21 s	6.30 s
2""	4.81 dd (3.6, 1.6)	4.83 dd (3.3, 1.4)	4.82 dd (3.4, 1.4)	4.93 m	3.64 m	4.93 brs	4.83 m
3"'	4.74 dd (9.3, 3.5)	4.69 m	4.66 dd (9.3, 3.4)	4.65 m	3.51 m	4.65 m	4.70 dd (9.3, 3.4)
4'''	4.34 dd (9.4, 9.3)	4.36 (t, 9.3)	4.35 m	4.31 m	3.13 m	4.31 m	4.36 m
5'''	5.07 dd (9.4, 6.2)	5.01 m	4.98 m	4.96 m	3.93 m	4.94 m	5.02 m
6'''	1.80 d (6.2)	1.80 d (6.5)	1.79 d (6.5)	1.75 d (6.3)	1.06 d (6.2)	1.73 d (6.2)	1.80 d (6.2)
1""				5.04 d (6.5)		5.16 d (7.8)	
2""				4.08 m		4.07 dd (8.1, 8.2)	
3""				4.09 m		4.21 m	
4""				4.17 m		4.22 m	
5""				4.27 m; 3.65 dd (10.6, 10.5)		3.91 m	
6""						4.47 m; 4.35 m	

Table 1.¹H NMR Spectroscopic Data for Derrisaponins D-J (1-7)

^arecorded in pyridine-d₅; ^brecorded in DMSO-d₆

Table 2. ¹³C NMR Spectroscopic Data for Derrisaponins D-J (1-7)

NO.	1 ^a	2 ^a	3 ^a	4 ^a	5 ^b	6 ^a	7 ^a
1	39.2	38.9	38.9	39.0	37.7	38.9	38.9
2	26.9	27.1	26.7	27.1	26.3	27.0	27.0
3	90.3	91.6	91.8	91.8	86.5	91.7	91.5
4	40.2	44.3	44.3	44.4	52.8	44.3	44.3
5	56.3	56.4	56.4	56.5	56.5	56.5	56.4
6	19.0	18.9	18.9	19.0	18.8	18.9	18.8
7	33.2	33.4	33.2	33.3	32.4	33.7	33.6
8	40.7	40.4	40.5	40.6	39.7	40.0	40.0
9	48.3	48.1	48.1	48.2	46.1	48.0	47.9
10	37.3	36.8	36.8	36.9	36.6	36.9	36.9
11	24.3	24.4	24.5	24.6	24.0	24.4	24.4
12	123.8	123.5	123.5	123.7	122.7	125.5	126.0
13	144.6	144.3	144.6	144.6	144.0	141.3	140.9
14	42.4	42.4	42.3	42.4	41.8	43.2	43.1
15	26.8	26.5	26.7	26.8	25.9	25.5	25.5
16	26.8	28.0	26.7	26.8	25.8	26.9	26.8
17	36.7	37.2	36.6	36.7	35.8	37.2	36.8
18	44.7	45.1	44.5	44.6	43.7	45.2	45.1
19	42.2	41.9	42.1	42.2	41.0	38.4	37.8
20	41.3	36.2	41.2	41.3	40.2	49.6	53.8
21	35.7	34.3	35.6	35.7	34.5	34.2	36.8
22	78.6	78.8	78.5	78.6	77.4	85.2	86.3
23	28.9	23.4	23.4	23.6	21.7	23.4	23.4
24	17.3	64.0	63.9	64.1	207.1	64.0	64.0
25	16.1	16.2	16.1	16.2	16.3	16.1	16.1
26	17.4	17.2	17.1	17.2	16.9	17.1	17.1

27	27.2	26.4	27.0	27.1	26.5	25.3	25.2
28	21.9	21.3	21.8	21.9	21.3	24.0	23.7
29	30.3	28.6	30.2	30.3	29.4	63.9	173.0
30	179.9	68.5	179.8	179.9	178.5	179.5	176.1
31	170.8	170.8	170.7	170.8	170.2		
32	21.5	21.7	21.5	21.5	21.3		
1'	105.8	105.9	105.9	106.0	103.7	105.9	105.8
2'	79.7	77.1	77.0	77.0	77.9	76.9	77.1
3'	79.4	79.0	78.7	79.1	77.6	78.8	78.9
4'	74.0	74.3	74.0	74.4	72.7	74.2	74.2
5'	77.9	78.2	77.3	78.1	74.1	78.1	78.0
6'	173.2	172.9	170.9	173.1	172.8	172.8	172.8
OCH ₃			52.5				
1"	103.2	102.2	102.1	102.0	101.0	101.9	102.2
2"	77.1	78.1	78.1	77.6	74.9	77.7	78.2
3"	76.7	77.1	76.9	84.5	74.9	84.1	77.0
4"	71.0	71.6	71.6	71.6	68.9	71.6	71.6
5"	76.7	76.9	76.9	77.0	75.0	77.0	76.9
6"	62.4	62.0	62.0	61.9	60.2	62.2	62.0
1'''	102.6	102.9	102.9	103.5	100.5	103.4	102.9
2'''	72.9	72.8	72.9	73.0	71.0	72.9	72.8
3'''	73.3	73.2	73.2	73.4	71.0	73.3	73.2
4'''	74.9	74.8	74.7	74.8	72.8	74.7	74.8
5'''	70.0	69.9	69.9	69.9	68.4	69.7	69.8
6'''	19.5	19.4	19.9	19.5	18.5	19.4	19.4
1''''				107.2		106.4	
2""				75.3		75.5	
3""				78.7		78.7	
4''''				71.5		72.0	
5""				67.5		78.7	
6''''						63.1	

Triterpenoid Saponins from Derris eriocarpa How

^arecorded in pyridine-*d*₅; ^brecorded in DMSO-*d*₆

Supporting information

Triterpenoid Saponins from Derris eriocarpa How

Bin Wang^{1#}, Shengxin Cai^{2#}, Ping Jiao², Thida Tea², Gil Ma¹, Indra Prakash^{1*}

¹The Coca-Cola Company, One Coca-Cola Plaza North West, Atlanta, GA 30313 ²Unigen USA, 2121 South State St., Suite 400, Tacoma, WA 98405 # Share the same contribution to the manuscript * Corresponding author Contents......Page Number

Purification procedure of compounds 1-12	S3
Tables S1 and S2. ¹ H and ¹³ C NMR data for compounds 8-12	S4
Figures S1 and S2. Selected HMBC and ROESY correlations for compounds 1-7	S7
Accurate Mass and NMR spectra of Derrisaponin D (1) in pyridine- d_5	S8
Accurate Mass and NMR spectra of Derrisaponin E (2) in pyridine- d_5	S11
Accurate Mass and NMR spectra of Derrisaponin F (3) in pyridine-d5	S14
Accurate Mass and NMR spectra of Derrisaponin G (4) in DMSO- <i>d</i> ₆	S18
Accurate Mass and NMR spectra of Derrisaponin H (5) in pyridine- d_5	S21
¹ H NMR spectrum of Derrisaponin H (5) in D ₂ O	\$25
Accurate Mass and NMR spectra of Derrisaponin I (6) in pyridine-d ₅	S25
Accurate Mass and NMR spectra of Derrisaponin J (7) in pyridine-d ₅	S29

Purification procedure of compounds 1-12

450 g of the extract from *D. eripcarpa* was mixed with 500 g XAD macroporous resins, dried down, loaded into the column (8×50 cm), and eluted with water, 10% MeOH, 30% MeOH, 50% MEOH, 70% MeOH, and 100% MeOH (5 L for each gradient). The 70% MeOH fraction (60 g, DED) was applied to an HP20ss column (50×30 cm) and eluted with 20% MeOH, 40% MeOH, 60% MeOH, 80% MeOH, and 100% MeOH (2 L for each gradient). Five fractions (DEDA, DEDB, DEDC, DEDD, and DEDE) were obtained after the LCMS analysis-based combination. Fraction DEDA (5.2 g) was applied to a C18 cartridge column (Biotage SNAP Cartridge, KP-C18-HS, 120 g) and eluted with 10% MeOH, 20% MeOH, 30% MeOH, 40% MeOH, 50% MeOH, 60% MeOH, and 70% MeOH (1 L for each gradient). All the elutes were combined into six subfractions DEDAA, DEDAB, DEDAC, DEDAD, DEDAE, and DEDAF based on the LCMS analysis. Fraction DEDAA (452 mg) was first applied to a Sephadex LH20 (1.5×100 cm) and eluted with 50:50 MeOH:water, and then further purified by preparative HPLC (Phenomenex Luna C18, 5 µm, 250×100 mm) to give pure compound 7 (23.9 mg). DEDAB was then applied to a Sephadex LH20 (1.5×100 cm) and eluted with 50:50 MeOH:water, and then further purified by preparative HPLC (Phenomenex Luna C18, 5 µm, 250×100 mm) to give a pure compound 10 (16.9 mg). DEDAD was applied to a Sephadex LH20 (1.5×100 cm) and eluted with 50:50 MeOH:water, and further purified by preparative HPLC (Phenomenex Luna C18, 5 µm, 250×100 mm) to give pure compounds 6 (18.5 mg) and 9 (31.3 mg). The HP20 fraction DEDB (20 g) was loaded to the C18 cartridge column (Biotage SNAP Cartridge, KP-C18-HS, 120 g) and eluted with a gradient solvent of MeOH/water from 10% to 90% to give 6 subfractions DEDBA, DEDBB, DEDBC, DEDBD, DEDBE, and DEDBF. Subfraction DEDBA was further separated on a Sephadex LH20 (1.5×100 cm) and eluted with 50:50 MeOH:water. The subfractions from DEDBA were applied on preparative HPLC (Phenomenex Luna C18, 10 µm, 250×21.2 mm) to give pure compound 4 (19.2 mg), 5 (5.5 mg), 8 (23.2 mg), and 11 (36.3 mg), and 12 (25.6 mg). Subfraction DEDBD was separated on a Sephadex LH20 (1.5×100 cm) and eluted with 50:50 MeOH:water. And the subfractions from DEDBD were further purified on preparative HPLC (Phenomenex Luna C18, 5 μ m, 250×100 mm) to yield 1 (7.7 mg), 2 (5.5 mg), and 3 (6.4 mg).

NO.	8 ^a	9ª	10 ^a	11 ^a	11 ^b	12 ^a	12 ^c
1	1.36 m; 0.85 m	1.39 d (12.7); 0.89 m	1.40 m; 0.90 m	1.34 m; 0.82 m	1.51 m; 0.91 m	1.31 m; 0.79 m	1.64 m; 1.02 m
2	2.19 m; 1.86 m	2.23 m; 1.89 m	2.22 m; 1.86 m	2.19 m; 1.86 m	1.87 m; 1.71 m	2.20 m; 1.87 m	2.01 m; 1.84 m
3	3.39 dd (11.4; 4.6)	3.40 dd (11.8; 4.5)	3.39 dd (11.8; 4.7)	3.39 dd (11.8; 4.6)	3.26 m	3.38 d (10.1)	3.38 m
5	0.88 m	0.87 m	0.89 m	0.87 m	0.87 m	0.84 m	0.95 m
6	1.63 m; 1.33 m	1.57 m; 1.26 m	1.62 m; 1.32 m	1.57 m; 1.26 m	1.53 m; 1.29 m	1.55 m; 1.23 m	1.64 m; 1.37 m
7	1.53 m; 1.30 m	1.47 m; 1.26 m	1.50 m; 1.29 m	1.51 m; 1.28 m	1.45 m; 1.25 m	1.45 m; 1.29 m	1.56 m; 1.42 m
9	1.64 m	1.59 m	1.60 m	1.62 m	1.51 m	1.55 m	1.61 m
11	1.83 m	1.74 m	1.75 m	1.82 m	1.80 m	1.74 m	1.90 m
12	5.57 brs	5.44 brs	5.44 brs	5.56 brs	5.20 brs	5.14 dd (3.7; 4.0)	5.30 brt (3.6)
15	1.80 m; 1.02 m	1.72 m; 0.96 m	1.72 m; 0.96 m	1.79 m; 1.02 m	1.70 m; 0.93 m	1.70 m; 1.02 m	1.83 m; 1.13 m
16	1.96 m; 1.02 m	1.86 m; 0.96 m	1.85 m; 0.96 m	1.96 m; 1.02 m	1.87 m; 0.94 m	1.86 m; 1.07 m	1.90 m; 1.17 m
18	2.98 dd (13.2; 4.7)	2.90 dd (13.5; 4.6)	2.90 dd (13.1; 4.6)	2.98 dd (13.1; 4.7);	2.35 dd (12.8; 4.9)	2.25 m	1.96 m
19	2.36 brd (12.7); 1.86 m	2.22 d (12.0); 1.77 m	2.22 m; 1.77 m	2.36 d (12.8); 1.86 m	1.74 m; 1.59 m	2.03 m; 1.60 m	1.90 m; 1.35 m
21	2.88 d (14.9); 1.80 m	2.69 d (14.3); 1.74 m	2.70 d (14.0); 1.74 m	2.87 d (14.6); 1.80 m	2.14 d (13.9); 1.60 d (13.5)	2.69 m; 2.39 d (11.9)	2.30 m; 2.24 d (12.0)
22	4.90 brs	4.92 brs	4.92 brs	4.89 brs	4.35 brs	4.30 d (5.9)	4.28 d (5.6)
23	1.46 s	1.46 s	1.46 s	1.46 s	1.13 s	1.43 s	1.26 s
24	4.28 m; 3.35 d (11.3)	4.28 m; 3.26 d (11.3)	4.29 m; 3.35 d (11.3)	4.27 d (11.4); 3.26 d (11.5)	3.91 m; 3.07 m	4.27 m; 3.25 d (11.4)	4.13 d (11.4); 3.20 d (11.5)
25	0.71 s	0.71 s	0.74 s	0.68 s	0.78 s	0.67 s	0.89 s
26	0.93 s	0.89 s	0.91 s	0.91 s	0.87 s	0.82 s	0.96 s
27	1.34 s	1.25 s	1.25 s	1.34 s	1.12 s	1.22 s	1.20 s
28	1.02 s	0.90 s	0.90 s	1.02 s	0.70 s	1.02 s	0.95 s
29	1.36 s	1.29 s	1.29 s	1.36 s	1.03 s	4.23 d (13.5);	3.46 m; 3.65 m
						3.90 d (11.2)	
32	2.05 s	2.41 s	2.42 s	2.05 s	1.88 s		
1'	5.00 d (7.4)	4.99 d (7.9)	4.97 d (7.3)	5.00 (7.3)	4.27 d (7.8)	4.98 (overlapped)	4.46 d (7.8)
2'	4.63 m	4.63 m	4.62 m	4.63 m	3.54 m	4.60 m	3.76 m
3'	4.62 m	4.63 m	4.63 m	4.64 m	3.36 m	4.62 m	3.69 m
4'	4.47 m	4.49 m	4.47 m	4.48 m	3.29 m	4.46 m	3.46 m
5'	4.64 m	4.63 m	4.62 m	4.66 m	3.54 m	4.60 m	3.59 m
1"	5.82 d (7.6)	5.84 d (7.6)	5.81 d (7.6)	5.84 d (7.5)	4.72 d (7.1)	5.80 d (7.5)	4.86 (overlapped with H ₂ O)
2"	4.60 m	4.59 dd (9.6; 7.6)	4.60m	4.59 dd (7.7; 7.5)	3.39 m	4.57 m	3.64 m
3"	4.20 m	4.13 dd (9.5; 3.3)	4.20 m	4.12 dd (9.6; 3.4)	3.33 m	4.12 dd (9.4; 3.1)	3.54 m
4"	4.70 d (3.2)	4.41 m	4.71 d (3.1)	4.41 m	3.52 m	4.41 m	3.71 m
5"	3.95 m	3.95 (t; 6.1)	3.95 dd (5.8; 6.0)	3.95 m	3.33 m	3.94 m	3.49 m
6"	4.31 m; 4.24 m	4.44 m; 4.33 m	4.30 m; 4.23 m	4.43 m 4.33 m	3.50 m; 3.45 m	4.42 m; 4.32 m	3.73 m
1'"	6.23 s	6.32 s	6.22 s	6.31 s	4.94 s	6.30 s	5.14 d (1.6)
2'''	4.94 m	4.83 brd (3.0)	4.93 m	4.83 m	3.63 m	4.82 m	3.92 m
3'''	4.65 m	4.69 dd (9.3; 3.4)	4.64 m	4.70 dd (9.3; 3.4)	3.48 m	4.69 dd (9.7; 3.2)	3.72 m
4'''	4.32 m	4.36 m	4.31 m	4.37 dd (9.4; 9.5)	3.13 m	4.36 m	3.40 m
5'''	4.95 m	5.01 m	4.94 m	5.01 m	3.88 m	5.00 m	4.09 m
6'''	1.74 d (6.2)	1.80 d (6.1)	1.73 d (6.3)	1.81 d (6.3)	1.09 d (6.1)	1.79 d (6.2)	1.27 d (6.2)

Table 1. ¹H NMR Spectroscopic Data for Derrisaponins D-J (1-7)

1''''	5.19 d (7.8)	6.18 d (8.0)	5.18 d (7.7)
2''''	4.08 dd (8.2; 8.5)	4.24 dd (8.7; 8.3)	4.07 dd (10.8; 8.1)
3''''	4.22 m	4.29 m	4.21 m
4''''	4.24 m	4.37 m	4.24 m
5''''	3.92 m	4.10 m	3.92 m
6''''	4.46 m; 4.37 m	4.49 m; 4.39 m	4.48 m; 4.37 m
1'''''			6.17 d (8.0)
2'''''			4.23 m
3'''''			4.30 m
4'''''			4.36 m
5'''''			4.10 m
6'''''			4.46 m; 4.36 m

^arecorded in pyridine-*d*₅; ^brecorded in DMSO-*d*₆; ^crecorded in methanol-*d*₄

NO.	8 ^a	9ª	10 ^a	11 ^a	11 ^b	12 ^a	12 ^c	NO.	8 ^a	9ª	10 ^a	11 ^a	11 ^b	12 ^a	12 ^c
1	39.0	38.9	38.9	39.0	38.5	38.9	39.7	1'	106.0	105.9	105.9	106.0	104.4	105.8	105.6
2	27.1	27.1	27.0	27.2	26.2	27.0	27.1	2'	77.0	77.0	76.9	77.2	76.1	77.1	77.1
3	91.9	91.6	91.8	91.7	90.5	91.5	92.5	3'	78.8	78.9	78.9	79.1	76.9	78.9	76.8
4	44.4	44.3	44.3	44.4	43.5	44.2	44.7	4'	74.4	74.2	74.2	74.4	72.4	74.3	73.9
5	56.5	56.3	56.4	56.5	55.5	56.4	57.3	5'	78.2	78.1	78.1	78.2	75.5	78.0	78.2
6	19.1	18.8	19.0	19.0	18.3	18.8	19.3	6'	173.0	172.7	172.8	173.0	ND	173.0	ND
7	33.3	33.2	33.2	33.3	32.6	33.7	34.2	1"	102.0	102.1	101.9	102.3	100.5	102.1	102.2
8	40.6	40.4	40.5	40.6	39.8	40.0	40.7	2"	77.9	78.2	77.8	78.3	76.0	78.1	78.0
9	48.2	48.0	48.0	48.2	47.2	48.0	48.8	3"	84.1	77.0	84.0	77.2	75.1	77.0	76.3
10	36.9	36.8	36.8	36.9	36.3	36.8	37.5	4"	71.7	71.5	71.6	71.7	69.7	71.6	71.6
11	24.6	24.4	24.4	24.6	23.7	24.4	24.8	5"	77.2	76.9	77.0	77.0	75.0	76.8	76.5
12	123.8	123.8	123.8	123.8	122.7	125.5	126.3	6"	62.4	61.9	62.2	62.1	60.2	62.0	62.3
13	144.7	144.2	144.2	144.7	144.0	141.3	141.9	1'''	103.5	102.9	103.4	103.0	100.7	102.8	102.3
14	42.4	42.2	42.2	42.4	41.7	43.2	43.8	2""	73.0	72.8	72.9	72.9	71.1	72.8	72.2
15	26.8	26.6	26.6	26.8	25.9	25.6	26.0	3'''	73.4	73.2	73.3	73.3	71.1	73.2	72.2
16	26.8	26.6	26.6	26.8	25.7	26.9	27.3	4'''	74.8	74.8	74.7	74.9	72.8	74.8	74.3
17	36.7	36.7	36.7	36.8	35.8	37.2	37.6	5'''	69.9	69.8	69.8	70.0	68.5	69.8	69.5
18	44.6	44.1	44.2	44.7	43.6	45.2	45.9	6'''	19.5	19.4	19.4	19.5	18.3	19.4	18.3
19	42.2	41.5	41.5	42.2	41.0	38.4	38.4	1""	106.5	96.7	106.4				
20	41.3	41.5	41.5	41.4	40.2	49.5	49.8	2""	75.6	74.4	75.5				
21	35.8	35.8	35.8	35.8	34.5	34.2	34.3	3""	78.9	79.1	78.7				
22	78.6	77.4	77.4	78.7	77.4	85.1	86.5	4""	72.1	71.7	72.0				
23	23.6	23.4	23.5	23.5	22.6	23.4	23.4	5""	79.0	79.8	78.7				
24	64.1	63.9	64.0	64.1	62.8	64.0	64.3	6""	63.2	62.7	62.7				
25	16.2	16.1	16.1	16.3	15.8	16.1	16.3	1"""			96.8				
26	17.3	17.1	17.1	17.3	16.8	17.1	17.4	2"""			74.5				
27	27.1	27.0	27.0	27.2	26.5	25.3	25.3	3"""			79.1				
28	21.9	21.7	21.7	21.9	21.3	24.0	23.9	4"""			71.7				
29	30.3	30.0	30.0	30.4	29.4	63.9	64.0	5"""			79.8				
30	180.0	176.9	176.9	180.0	178.4	179.5	181.0	6"""			63.1				
31	170.8	171.3	171.3	170.9	170.1										
32	21.6	22.0	22.1	21.6	21.3										

Table 2. ¹³C NMR Spectroscopic Data for Derrisaponins D-J (1-7) (a-pyridine; b-DMSO)

^arecorded in pyridine-*d*₅; ^brecorded in DMSO-*d*₆; ^crecorded in methanol-*d*₄

Figure S1. Selected HMBC and ROESY correlations for key positions and linkage sites of sugar units and the aglycone for Derrisaponins E-J (2-7)

Figure S2. Selected ROESY correlations for the aglycone of Derrisaponins E-J (2-7)

Figure S4. ¹H NMR spectrum for Derrisaponin D (1) in pyridine- d_5

Figure S5. ¹³C NMR spectrum for Derrisaponin D (1) in pyridine- d_5

Figure S6. HSQC spectrum for Derrisaponin D (1) in pyridine- d_5

Figure S7. HMBC spectrum for Derrisaponin D (1) in pyridine- d_5

Figure S8. ROESY spectrum for Derrisaponin D (1) in pyridine- d_5

Figure S10. ¹H NMR spectrum for Derrisaponin E (2) in pyridine- d_5

Figure S11. ¹³C NMR spectrum for Derrisaponin E (2) in pyridine- d_5

Figure S12. ¹H-¹H COSY spectrum for Derrisaponin E (2) in pyridine- d_5

Figure S14. HMBC spectrum for Derrisaponin E (2) in pyridine- d_5

Figure S15. ROESY spectrum for Derrisaponin E (2) in pyridine- d_5

Figure S16. HRESIMS for Derrisaponin F (3)

Figure S18. ¹³C NMR spectrum for Derrisaponin F (3) in pyridine- d_5

Figure S20. HSQC spectrum for Derrisaponin F (3) in pyridine- d_5

Figure S21. HMBC spectrum for Derrisaponin F (3) in pyridine- d_5

Figure S22. ROESY spectrum for Derrisaponin F (3) in pyridine- d_5

Figure S24. ¹H NMR spectrum for Derrisaponin G (4) in pyridine-*d*₅

Figure S25. ¹³C NMR spectrum for Derrisaponin G (4) in pyridine- d_5

Figure S26. ¹H-¹H COSY spectrum for Derrisaponin G (4) in pyridine-*d*₅

Figure S28. HMBC spectrum for Derrisaponin G (4) in pyridine-d₅

Figure S29. ROESY spectrum for Derrisaponin G (4) in pyridine-d₅

Figure S30. HRESIMS for Derrisaponin H (5)

Figure S32. ¹³C NMR spectrum for Derrisaponin H (5) in DMSO- d_6

Figure S33. ¹H-¹H COSY spectrum for Derrisaponin H (5) in DMSO- d_6

Figure S34. HSQC spectrum for Derrisaponin H (5) in DMSO-d₆

Figure S35. HMBC spectrum for Derrisaponin H (5) in DMSO- d_6

Figure S36. ROESY spectrum for Derrisaponin H (5) in DMSO- d_6

Figure S40. ¹³C NMR spectrum for Derrisaponin I (6) in pyridine-*d*₅

Figure S41. ¹H-¹H COSY spectrum for Derrisaponin I (6) in pyridine-*d*₅

Figure S42. HSQC spectrum for Derrisaponin I (6) in pyridine-d₅

Figure S43. HMBC spectrum for Derrisaponin I (6) in pyridine-d₅

Figure S44. ROESY spectrum for Derrisaponin I (6) in pyridine-d₅

Figure S46. ¹H NMR spectrum for Derrisaponin J (7) in pyridine-*d*₅

Figure S47. ¹³C NMR spectrum for Derrisaponin J (7) in pyridine- d_5

Figure S48. ¹H-¹H COSY spectrum for Derrisaponin J (7) in pyridine-*d*₅

Figure S49. HSQC spectrum for Derrisaponin J (7) in pyridine-d₅

Figure S50. HMBC spectrum for Derrisaponin J (7) in pyridine- d_5

Figure S51. ROESY spectrum for Derrisaponin J (7) in pyridine-*d*₅